A-Z of Machine Learning and Computer Vision Terms

  • This is some text inside of a div block.
  • This is some text inside of a div block.
  • This is some text inside of a div block.
  • This is some text inside of a div block.
  • This is some text inside of a div block.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
Quantum Machine Learning
Quantum Machine Learning
Query Strategy (Active Learning)
Query Strategy (Active Learning)
Query Synthesis Methods
Query Synthesis Methods
R
R
RAG Architecture
RAG Architecture
ROC (Receiver Operating Characteristic) Curve
ROC (Receiver Operating Characteristic) Curve
Random Forest
Random Forest
Recall (Sensitivity or True Positive Rate)
Recall (Sensitivity or True Positive Rate)
Recurrent Neural Network (RNN)
Recurrent Neural Network (RNN)
Region Proposal Network (RPN)
Region Proposal Network (RPN)
Region-Based CNN (R-CNN)
Region-Based CNN (R-CNN)
Regression (Regression Analysis)
Regression (Regression Analysis)
Regularization Algorithms
Regularization Algorithms
Reinforcement Learning
Reinforcement Learning
Responsible AI
Responsible AI
S
S
Scale Imbalance
Scale Imbalance
Scikit-Learn
Scikit-Learn
Segment Anything Model (SAM)
Segment Anything Model (SAM)
Selective Sampling
Selective Sampling
Self-Supervised Learning
Self-Supervised Learning
Semantic Segmentation
Semantic Segmentation
Semi-supervised Learning
Semi-supervised Learning
Sensitivity and Specificity of Machine Learning
Sensitivity and Specificity of Machine Learning
Sentiment Analysis
Sentiment Analysis
Sliding Window Attention
Sliding Window Attention
Stream-Based Selective Sampling
Stream-Based Selective Sampling
Supervised Learning
Supervised Learning
Support Vector Machine (SVM)
Support Vector Machine (SVM)
Surrogate Model
Surrogate Model
Synthetic Data
Synthetic Data
T
T
Tabular Data
Tabular Data
Text Generation Inference
Text Generation Inference
Training Data
Training Data
Transfer Learning
Transfer Learning
Transformers (Transformer Networks)
Transformers (Transformer Networks)
Triplet Loss
Triplet Loss
True Positive Rate (TPR)
True Positive Rate (TPR)
Type I Error (False Positive)
Type I Error (False Positive)
Type II Error (False Negative)
Type II Error (False Negative)
U
U
Unsupervised Learning
Unsupervised Learning
V
V
Variance (Model Variance)
Variance (Model Variance)
Variational Autoencoders
Variational Autoencoders
W
W
Weak Supervision
Weak Supervision
Weight Decay (L2 Regularization)
Weight Decay (L2 Regularization)
X
X
XAI (Explainable AI)
XAI (Explainable AI)
XGBoost
XGBoost
Y
Y
YOLO (You Only Look Once)
YOLO (You Only Look Once)
Yolo Object Detection
Yolo Object Detection
Z
Z
Zero-Shot Learning
Zero-Shot Learning
P

Principal Component Analysis

PCA is a linear dimensionality reduction technique used to reduce the number of features in a dataset while preserving as much variance as possible. It does so by finding new axes—called principal components—that are linear combinations of the original features and are ordered by the amount of variance they capture.

The first principal component captures the direction of maximum variance in the data, the second captures the next highest variance orthogonal to the first, and so on. By projecting data onto the top k components, PCA reduces dimensionality while retaining the most informative structure.

PCA is commonly used for data compression, noise reduction, and visualization of high-dimensional data. It assumes linear relationships and is sensitive to the scale of features, so preprocessing steps like normalization are important.

Although simple and fast, PCA doesn’t capture nonlinear structures and may not perform well when important information lies in subtle, nonlinear patterns.

Explore Our Products

Lightly One

Data Selection & Data Viewer

Get data insights and find the perfect selection strategy

Learn More

Lightly Train

Self-Supervised Pretraining

Leverage self-supervised learning to pretrain models

Learn More

Lightly Edge

Smart Data Capturing on Device

Find only the most valuable data directly on devide

Learn More

Ready to Get Started?

Experience the power of automated data curation with Lightly

Learn More