A-Z of Machine Learning and Computer Vision Terms

  • This is some text inside of a div block.
  • This is some text inside of a div block.
  • This is some text inside of a div block.
  • This is some text inside of a div block.
  • This is some text inside of a div block.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
PyTorch
PyTorch
Q
Q
Quantum Machine Learning
Quantum Machine Learning
Query Strategy (Active Learning)
Query Strategy (Active Learning)
Query Synthesis Methods
Query Synthesis Methods
R
R
RAG Architecture
RAG Architecture
ROC (Receiver Operating Characteristic) Curve
ROC (Receiver Operating Characteristic) Curve
Random Forest
Random Forest
Recall (Sensitivity or True Positive Rate)
Recall (Sensitivity or True Positive Rate)
Recurrent Neural Network (RNN)
Recurrent Neural Network (RNN)
Region-Based CNN (R-CNN)
Region-Based CNN (R-CNN)
Regression (Regression Analysis)
Regression (Regression Analysis)
Regularization Algorithms
Regularization Algorithms
Reinforcement Learning
Reinforcement Learning
Responsible AI
Responsible AI
S
S
Scale Imbalance
Scale Imbalance
Scikit-Learn
Scikit-Learn
Segment Anything Model (SAM)
Segment Anything Model (SAM)
Selective Sampling
Selective Sampling
Self-Supervised Learning
Self-Supervised Learning
Semantic Segmentation
Semantic Segmentation
Semi-supervised Learning
Semi-supervised Learning
Sensitivity and Specificity of Machine Learning
Sensitivity and Specificity of Machine Learning
Sentiment Analysis
Sentiment Analysis
Sliding Window Attention
Sliding Window Attention
Stream-Based Selective Sampling
Stream-Based Selective Sampling
Supervised Learning
Supervised Learning
Support Vector Machine (SVM)
Support Vector Machine (SVM)
Surrogate Model
Surrogate Model
Synthetic Data
Synthetic Data
T
T
Tabular Data
Tabular Data
Text Generation Inference
Text Generation Inference
Training Data
Training Data
Transfer Learning
Transfer Learning
Transformers (Transformer Networks)
Transformers (Transformer Networks)
Triplet Loss
Triplet Loss
True Positive Rate (TPR)
True Positive Rate (TPR)
Type I Error (False Positive)
Type I Error (False Positive)
Type II Error (False Negative)
Type II Error (False Negative)
U
U
Unsupervised Learning
Unsupervised Learning
V
V
Variance (Model Variance)
Variance (Model Variance)
Variational Autoencoders
Variational Autoencoders
W
W
Weak Supervision
Weak Supervision
Weight Decay (L2 Regularization)
Weight Decay (L2 Regularization)
X
X
XAI (Explainable AI)
XAI (Explainable AI)
XGBoost
XGBoost
Y
Y
YOLO (You Only Look Once)
YOLO (You Only Look Once)
Yolo Object Detection
Yolo Object Detection
Z
Z
Zero-Shot Learning
Zero-Shot Learning
P

Prompt Engineering

Prompt engineering is the practice of crafting and refining the input instructions or queries given to generative AI models (such as large language models) in order to elicit the desired outputs​.Because models like GPT-3 or GPT-4 respond to whatever prompt they are given, how that prompt is formulated – the wording, context provided, format, etc. – can have a big impact on the quality and relevance of the model’s response. Prompt engineering often involves techniques like: providing clear instructions, giving the model a role or persona, supplying examples of the desired output format (few-shot prompting), or splitting complex tasks into multiple prompts (as in prompt chaining). The aim is to guide the model’s behavior without additional training, simply by exploiting the knowledge already present in the model and steering it with well-designed prompts​.For example, if one wants a model to generate an email, a prompt engineer might write: “You are a helpful assistant. Write a polite email to a coworker named Alex asking for an update on project X.” – this gives context and specifics that lead to a better result. Prompt engineering has become important as a way to get optimal performance from AI systems, especially when direct fine-tuning or retraining is not feasible. It requires understanding both the capabilities and limitations of the model, and iteratively adjusting the phrasing or structure of prompts to reduce ambiguity and bias in responses​.In essence, prompt engineering is about speaking the model’s language: finding the right input that makes the black-box model produce useful, accurate, and relevant output.

Explore Our Products

Lightly One

Data Selection & Data Viewer

Get data insights and find the perfect selection strategy

Learn More

Lightly Train

Self-Supervised Pretraining

Leverage self-supervised learning to pretrain models

Learn More

Lightly Edge

Smart Data Capturing on Device

Find only the most valuable data directly on devide

Learn More

Ready to Get Started?

Experience the power of automated data curation with Lightly

Learn More