A-Z of Machine Learning and Computer Vision Terms

  • This is some text inside of a div block.
  • This is some text inside of a div block.
  • This is some text inside of a div block.
  • This is some text inside of a div block.
  • This is some text inside of a div block.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
Ghost Frames
Ghost Frames
Gradient Descent
Gradient Descent
Greyscale
Greyscale
Ground Truth
Ground Truth
H
H
Hierarchical Clustering
Hierarchical Clustering
Histogram of Oriented Gradients (HOG)
Histogram of Oriented Gradients (HOG)
Human Pose Estimation
Human Pose Estimation
Human in the Loop (HITL)
Human in the Loop (HITL)
Hyperparameter Tuning
Hyperparameter Tuning
Hyperparameters
Hyperparameters
I
I
Image Annotation
Image Annotation
Image Augmentation
Image Augmentation
Image Captioning
Image Captioning
Image Classification
Image Classification
Image Degradation
Image Degradation
Image Generation
Image Generation
Image Processing
Image Processing
Image Recognition
Image Recognition
Image Restoration
Image Restoration
Image Segmentation
Image Segmentation
Imbalanced Data
Imbalanced Data
Imbalanced Dataset
Imbalanced Dataset
In-Context Learning
In-Context Learning
Instance Segmentation
Instance Segmentation
Instance Segmentation
Instance Segmentation
Interpolation
Interpolation
Interpretability
Interpretability
Intersection over Union (IoU)
Intersection over Union (IoU)
J
J
Jaccard Index
Jaccard Index
Jupyter Notebooks
Jupyter Notebooks
K
K
K-Means Clustering
K-Means Clustering
Keypoints
Keypoints
Knowledge Graphs
Knowledge Graphs
L
L
LIDAR
LIDAR
Label
Label
Label Errors
Label Errors
Large Language Model (LLM)
Large Language Model (LLM)
Latent Dirichlet Allocation (LDA)
Latent Dirichlet Allocation (LDA)
Latent Space
Latent Space
Learning Rate
Learning Rate
Linear Discriminant Analysis (LDA)
Linear Discriminant Analysis (LDA)
Linear Regression
Linear Regression
Logistic Regression
Logistic Regression
Long Short-Term Memory (LSTM)
Long Short-Term Memory (LSTM)
Loss Function
Loss Function
M
M
Machine Learning (ML)
Machine Learning (ML)
Manifold Learning
Manifold Learning
Markov Chains
Markov Chains
Mean Average Precision (mAP)
Mean Average Precision (mAP)
Mean Squared Error (MSE)
Mean Squared Error (MSE)
Medical Image Segmentation
Medical Image Segmentation
Micro-Models
Micro-Models
Model Accuracy
Model Accuracy
Model Parameters
Model Parameters
Model Validation
Model Validation
Motion Detection
Motion Detection
Motion Estimation
Motion Estimation
Multi-Task Learning
Multi-Task Learning
N
N
NIfTI
NIfTI
Natural Language Processing (NLP)
Natural Language Processing (NLP)
Neural Architecture Search
Neural Architecture Search
Neural Networks
Neural Networks
Neural Style Transfer
Neural Style Transfer
Noise
Noise
Normalization
Normalization
O
O
Object Detection
Object Detection
Object Localization
Object Localization
Object Recognition
Object Recognition
Object Tracking
Object Tracking
One-Shot Learning
One-Shot Learning
Optical Character Recognition (OCR)
Optical Character Recognition (OCR)
Optimization Algorithms
Optimization Algorithms
Outlier Detection
Outlier Detection
Overfitting
Overfitting
P
P
PACS (Picture Archiving and Communication System)
PACS (Picture Archiving and Communication System)
PR AUC
PR AUC
Pandas and NumPy
Pandas and NumPy
Panoptic Segmentation
Panoptic Segmentation
Parameter-Efficient Fine-Tuning (Prefix-Tuning)
Parameter-Efficient Fine-Tuning (Prefix-Tuning)
Pattern Recognition
Pattern Recognition
Perceptron
Perceptron
Pixel
Pixel
Pool-Based Sampling
Pool-Based Sampling
Pooling
Pooling
Pose Estimation
Pose Estimation
Precision
Precision
Predictive Model Validation
Predictive Model Validation
Principal Component Analysis
Principal Component Analysis
Prompt Chaining
Prompt Chaining
Prompt Engineering
Prompt Engineering
Prompt Injection
Prompt Injection
C

Class Imbalance

Class imbalance refers to an uneven distribution of classes in a dataset, where some class (the “majority” class) has many more samples than another class (the “minority” class)​.This situation is common in real-world classification tasks – for instance, in fraud detection, fraudulent transactions might be only 1% of the data (minority) while legitimate transactions are 99% (majority). Similarly, in medical diagnostics data, healthy cases often vastly outnumber disease cases. Class imbalance can be problematic because most machine learning algorithms assume or perform best when the classes are roughly balanced. The model will tend to bias towards the majority class, since simply predicting the majority every time minimizes overall error; as a result, it may largely ignore the minority class, which is usually the class of greater interest​For example, a classifier might achieve 99% accuracy on the fraud dataset by always predicting “not fraud,” but such a model is essentially useless for catching actual fraud instances.The presence of class imbalance means that evaluation metrics like plain accuracy become less informative – one must look at metrics that capture minority-class performance (such as precision, recall, F1-score, area under the ROC curve, etc.). It also necessitates special techniques during modeling. Data-level methods include re-sampling the training data: one can over-sample the minority class (e.g. duplicate minority examples or generate synthetic ones using methods like SMOTE) or under-sample the majority class (remove some majority examples) to achieve a more balanced dataset​.Algorithm-level methods include using cost-sensitive learning or class weight adjustments – assigning a higher penalty to mistakes on the minority class during training, so the model is incentivized to get those right​.In practice, a combination of approaches may be used. For instance, one might slightly over-sample the minority class and also use a weighted loss function that emphasizes minority-class accuracy​. Another strategy is to use one-vs-all or threshold-moving techniques to adjust the decision threshold for the minority class to achieve a desired recall. It’s also important to have a properly stratified validation scheme: evaluation on imbalanced data should reflect the costs of different errors. In summary, class imbalance is a common challenge that can lead to biased models if not addressed – the key is to recognize it and apply techniques that restore focus on the minority class performance without introducing too much overfitting or noise by naive oversampling.

Explore Our Products

Lightly One

Data Selection & Data Viewer

Get data insights and find the perfect selection strategy

Learn More

Lightly Train

Self-Supervised Pretraining

Leverage self-supervised learning to pretrain models

Learn More

Lightly Edge

Smart Data Capturing on Device

Find only the most valuable data directly on devide

Learn More

Ready to Get Started?

Experience the power of automated data curation with Lightly

Learn More